If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-16x-44=0
a = 3; b = -16; c = -44;
Δ = b2-4ac
Δ = -162-4·3·(-44)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-28}{2*3}=\frac{-12}{6} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+28}{2*3}=\frac{44}{6} =7+1/3 $
| 10+x+1=35x | | (2)x+3=509 | | x+11=0x | | X/25=20/x | | x+1=-10x | | 3/20x=12/5 | | 2/9k-1/8=1/3 | | -178+10x+13x=167 | | -3x-15+4x=12 | | Z=y/3 | | x^-6x+15=3x-5 | | 54=2x+3x | | 34=v/2+11 | | 3/2x=2x-1 | | 7^(a+2)=9^(2a) | | 45216=3.14r^2 | | 5/6r=30 | | Z^2+6z+4=0 | | 4-x-2=3x+5 | | -11(x+3.5)=-32.5 | | 3^(2x+5)=100 | | 12(r-855)=624 | | 24(j-965)=744 | | -9t^2+153=0 | | 13p+13=30 | | 7+2x+5+7x=84 | | 64+(-4x)=29 | | 2^3n=64 | | -29=10x+1 | | C=4a-5=15a | | m^2=351 | | x*(.05)=100000 |